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Physical Acoustics Characterization (PAC)

4/20/21Los Alamos National Laboratory

• The area of acoustics and physics that studies interactions of acoustic 
waves with gaseous, liquid and/or solid media on macro- and micro-
scales … to obtain the relevant information about a medium under 
consideration by measuring the properties of acoustic waves
propagating through this medium. -- Wikipedia

• Properties controlling waves:
– Material properties (i.e., elastic properties, mass density)
– Geometry (e.g., exterior shape, internal defects)
– Boundary conditions

• Uses two main wave modalities:
– Propagating waves, i.e., transients
– Standing waves, i.e., resonance
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Standing Waves (Resonance)

4/20/21Los Alamos National Laboratory

• A standing wave, also known as a stationary wave or a resonance, 
is a wave which oscillates in time but whose peak amplitude profile 
does not move in space.

• Resonance occurs in objects at distinct frequencies, known as 
resonance frequencies defined by the shape of the object, stiffness of 
the material, and boundary conditions (e.g., fixed vs. free).

• Standing wave patterns (i.e., vibrational shape) are known as 
resonant modes.

• Example modes:
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Measuring Resonance

• Making resonance measurements requires a source of vibration (e.g., 
controlled transducer, operational noise, etc.) and a vibration detector (e.g., 
piezo-electric accelerometer, laser vibrometer, microphone, etc.)

• Resonance Spectrum (typical): 
– excite source transducer at single frequency,
– measure response at single location, 
– increment source frequency, 
– repeat.

• Resonant Modes:
– Excite at a resonance frequency
– Measure response at multiple locations

• Typically use scanning laser vibrometer
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Resonance Inspection Techniques & Analyses (RITA©)

• ARS: Acoustic Resonance Spectroscopy for signature 
identification and “finger-printing”

• RUS: Resonant Ultrasound Spectroscopy for measuring 
material properties (elastic constants, density)

• NRUS: Nonlinear RUS for damage detection & quantification
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Acoustic Resonance Spectroscopy
(“Finger Printing”)
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ARS: Description of the Technology

• Resonances are uniquely determined by geometry, mass density, and 
elastic tensor.

• Compare resonance spectra to identify changes in the above 
parameters.

• Use machine learning to automate identification and process large 
data sets.



ARS Example: Legacy vs. Development Components

• High tolerance on geometry:  verified no geometrical differences
• Destructive Testing 1: Hardness; within the error bars, no differences really
• Destructive Testing 2: grain structure; obvious differences that ARS was able to detect
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• AM dog bone specimens for mechanical testing
• 57 samples analyzed blindly
• 27 samples are self consistent
• Remaining samples indicate considerable variation
• Modal Analysis can be insightful, but not quantitative.

ARS Example: Additively Manufactured Components
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Resonant Ultrasound Spectroscopy
(Quantification of Properties)
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RUS: Limitations of Traditional Methodology
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• Simple geometries (solid spheres, right circular cylinders, rectangular 
parallelepipeds) required for “forward” calculation of resonance 
frequencies.

• Free boundary conditions, minimal coupling/impact of source and 
receiver transducers.

• Rule of thumb: 5 resonance frequencies needed for each independent 
elastic constant (e.g., 2 constants for isotropic = 10 resonance peaks)

• Must capture lowest resonance frequencies, no missing modes 
allowed. (exceptions allow a few missing modes, but must know 
where)

• Inversion process typically requires initial “guess” of elastic constants 
to be close to actual values.
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Material Property Determination of Complex Geometries

4/20/21Los Alamos National Laboratory

Complete Process:
• Resonance Measurement: Vibrate component and utilize 3D laser vibrometry to:

– Measure resonance frequencies
– Image modal shapes

• Component Geometry Measurement:
– 3D Geometry Scan of Part (Faro Arm, CMM)
– Post Process 3D Geometry Scan 

• COMSOL Analysis: FEM using 3D geometry from Faro Arm
– Compute expected resonance frequencies
– Visualize expected resonance modes

• Data Interpretation (Mode Matching): match resonance frequencies from LV 
measurements (frequencies and shapes) to results from COMSOL

• Material Property Determination (RUS Inversion): using specified frequencies from 
mode matching, geometry from Faro arm measurements and the COMSOL model, 
iteratively solve for the properties (elastic moduli, density, Euler angles) using a 
genetic algorithm.
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RUS on new PETN Mock: Material Property Determination
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Pellet 
(with modal response from 
3D SLDV overlaid)
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RUS Example:  Complex Geometry, AM Dog Bones

4/20/21Los Alamos National Laboratory

• AM dog bone specimens for mechanical testing
• 57 samples analyzed blindly
• 27 samples are self consistent
• Remaining samples indicate considerable variation
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RUS Example:  Complex Geometry, AM Dog Bones

4/20/21Los Alamos National Laboratory

• Utilize FEM based RUS 
methodology with resonance 
mode matching.

• Results:
– All parts have essentially the 

same Young’s Modulus.
– Self consistent parts have 

typical Poisson’s ratio of 
>0.33.

– Inconsistent parts have varying 
Poisson’s ratios < 0.33

– Mass density fluctuations < 1%
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Nonlinear Resonant Ultrasound Spectroscopy
(Defect Detection and Quantification)

4/20/21Los Alamos National Laboratory 16



Nonlinear Resonant Ultrasound Spectroscopy (NRUS)
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• Quantify hysteretic nonlinear elastic parameter (a) from the natural 
resonances ( f, Df ) of an object driven at multiple strain (e )
amplitudes.

f f

Df

Resonance Inspection Techniques & Analyses 
(RITA) system previously developed for testing of 
weapons components.

Portable RITA© system 
(pictured).
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NRUS: Benefits for Damage Detection

• It has been demonstrated that nonlinear acoustics (including NRUS) 
is much more sensitive to the presence of damage than linear 
acoustic techniques. 

Normalized evolution of wave-speed 
(red), linear attenuation (blue) and 
nonlinearity (black) of a plastic 
sample subjected to fatigue loading.

Evolution and quantification of damage in a composite plate

• In fact, nonlinear indicators correlate directly with 
damage density. 



NRUS Example: fatigue damage in Haynes 230 Superalloy
Nondestructive Evaluation of Loading and Fatigue Effects in Haynes® 230® Alloy
TA Saleh - 2006
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Experimental Setup

Voltage amplifier

Sample

Data Acquisition
Signal Generation
Data Management

NRUS Example: AM of ABS plastic components

• Tested 4 AM samples(square columns 10mm X 10mm X 30mm).
• Samples were instrumented with piezoelectric transducers.
• The vibrational response of the longitudinal modes of the samples was 

measured on the side opposite to the transducer using a LASER vibrometer.
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• The simulations established a direct link between nonlinear elastic behavior and force chains 
inside the sample. 

• Without the force chains (i.e., without porosity) the non-linear elastic behavior is not observed.

• A cross section of granular material was obtained and its grain structure was 
incorporated into HOSS

Nonlinear elastic material analysis - meso-scale mechanics
Experimental (NRUS) vs Numerical (HOSS)
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Current Activities & Path Forward
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Current Projects
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• LDRD 
– ER Reserve: apply acoustic monitoring (including resonance techniques) to 

SMR components
• use embedded sensing (fiber Bragg)
• use ambient noise

– DI (through Seaborg Institute): Enhance RUS for Composite Samples
• multiple materials (e.g. bonded samples of more than one material)
• in situ boundary conditions (e.g., fixed vs. free)
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Questions?
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High-Frequency Probes

Low-Frequency Pump

Low-Frequency Sensor

(a)

(b) (c)






